Summary This review considers the influential notion of a canonical (cortical) microcircuit in light of recent theories about neuronal processing. Specifically, we conciliate quantitative studies of microcircuitry and the functional logic of neuronal computations. We revisit the established idea that message passing among hierarchical cortical areas implements a form of Bayesian inference – paying careful attention to the implications for intrinsic connections among neuronal populations. By deriving canonical forms for these computations, one can associate specific neuronal populations with specific computational roles. This analysis discloses a remarkable correspondence between the microcircuitry of the cortical column and the connectivity implied by predictive coding. Furthermore, it provides some intuitive insights into the functional asymmetries between feedforward and feedback connections and the characteristic frequencies over which they operate.
This paper considers psychotic symptoms in terms of false inferences or beliefs. It is based on the notion that the brain is an inference machine that actively constructs hypotheses to explain or predict its sensations. This perspective provides a normative (Bayes-optimal) account of action and perception that emphasizes probabilistic representations; in particular, the confidence or precision of beliefs about the world. We will consider hallucinosis, abnormal eye movements, sensory attenuation deficits, catatonia, and delusions as various expressions of the same core pathology: namely, an aberrant encoding of precision. From a cognitive perspective, this represents a pernicious failure of metacognition (beliefs about beliefs) that can confound perceptual inference. In the embodied setting of active (Bayesian) inference, it can lead to behaviors that are paradoxically more accurate than Bayes-optimal behavior. Crucially, this normative account is accompanied by a neuronally plausible process theory based upon hierarchical predictive coding. In predictive coding, precision is thought to be encoded by the post-synaptic gain of neurons reporting prediction error. This suggests that both pervasive trait abnormalities and florid failures of inference in the psychotic state can be linked to factors controlling post-synaptic gain – such as NMDA receptor function and (dopaminergic) neuromodulation. We illustrate these points using biologically plausible simulations of perceptual synthesis, smooth pursuit eye movements and attribution of agency – that all use the same predictive coding scheme and pathology: namely, a reduction in the precision of prior beliefs, relative to sensory evidence.
The descending projections from motor cortex share many features with top-down or backward connections in visual cortex; for example, corticospinal projections originate in infragranular layers, are highly divergent and (along with descending cortico-cortical projections) target cells expressing NMDA receptors. This is somewhat paradoxical because backward modulatory characteristics would not be expected of driving motor command signals. We resolve this apparent paradox using a functional characterisation of the motor system based on Helmholtz’s ideas about perception; namely, that perception is inference on the causes of visual sensations. We explain behaviour in terms of inference on the causes of proprioceptive sensations. This explanation appeals to active inference, in which higher cortical levels send descending proprioceptive predictions, rather than motor commands. This process mirrors perceptual inference in sensory cortex, where descending connections convey predictions, while ascending connections convey prediction errors. The anatomical substrate of this recurrent message passing is a hierarchical system consisting of functionally asymmetric driving (ascending) and modulatory (descending) connections: an arrangement that we show is almost exactly recapitulated in the motor system, in terms of its laminar, topographic and physiological characteristics. This perspective casts classical motor reflexes as minimising prediction errors and may provide a principled explanation for why motor cortex is agranular.
This article provides a neurobiological account of symptoms that have been called ‘hysterical’, ‘psychogenic’ or ‘medically unexplained’, which we will call functional motor and sensory symptoms. We use a neurobiologically informed model of hierarchical Bayesian inference in the brain to explain functional motor and sensory symptoms in terms of perception and action arising from inference based on prior beliefs and sensory information. This explanation exploits the key balance between prior beliefs and sensory evidence that is mediated by (body focused) attention, symptom expectations, physical and emotional experiences and beliefs about illness. Crucially, this furnishes an explanation at three different levels: (i) underlying neuromodulatory (synaptic) mechanisms; (ii) cognitive and experiential processes (attention and attribution of agency); and (iii) formal computations that underlie perceptual inference (representation of uncertainty or precision). Our explanation involves primary and secondary failures of inference; the primary failure is the (autonomous) emergence of a percept or belief that is held with undue certainty (precision) following top-down attentional modulation of synaptic gain. This belief can constitute a sensory percept (or its absence) or induce movement (or its absence). The secondary failure of inference is when the ensuing percept (and any somatosensory consequences) is falsely inferred to be a symptom to explain why its content was not predicted by the source of attentional modulation. This account accommodates several fundamental observations about functional motor and sensory symptoms, including: (i) their induction and maintenance by attention; (ii) their modification by expectation, prior experience and cultural beliefs and (iii) their involuntary and symptomatic nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.