Recent evidence suggests that injection drug users who abuse heroin are at increased risk for CNS complications from human immunodeficiency virus (HIV) infection. Opiate drugs may intrinsically alter the pathogenesis of HIV by directly modulating immune function and by directly modifying the CNS response to HIV. Despite this, the mechanisms by which opiates increase the neuropathogenesis of HIV are uncertain. Herein we describe the effect of morphine and the HIV-1 protein toxin Tat 1-72 on astroglial function in cultures derived from ICR mice. Astroglia maintain the blood brain barrier and influence inflammatory signaling in the CNS. Astrocytes can express μ opioid receptors, and are likely targets for abused opiates, which preferentially activate μ-opioid receptors. While Tat alone disrupts astrocyte function, when combined with morphine, Tat causes synergistic increases in [Ca 2+ ] i. . Moreover, astrocyte cultures treated with morphine and Tat showed exaggerated increases in chemokine release including monocyte chemoattractant protein-1 (MCP-1) and regulated on activation, normal T cell expressed and secreted (RANTES), as well as interleukin-6 (IL-6). Morphine-Tat interactions were prevented by the μ-opioid receptor antagonist β-funaltrexamine, or by immunoneutralizing Tat 1-72 or substituting a non-toxic, deletion mutant (Tat Δ31-61 ). Our findings suggest that opiates may increase the vulnerability of the CNS to viral entry (via recruitment of monocytes/macrophages) and ensuing HIV encephalitis by synergistically increasing MCP-1 and RANTES release by astrocytes. The results further suggest ‡ Abbreviations: alpha chemokine receptor (CXCR); beta chemokine ligand (CCL); beta chemokine receptor (CCR); β-funaltrexamine (β-FNA); calcium-induced calcium release (CICR); excitatory amino acid transporter-2 (EAAT2); granulocyte macrophage colony stimulating factor (GM-CSF); granulocyte-colony stimulating factor (G-CSF); human immunodeficiency virus (HIV); human immunodeficiency virus encephalitis (HIVE); inositol trisphosphate (IP 3 ); interferon (IFN); interleukin (IL); intracellular Ca 2+ ([Ca 2+ ] i ); monocyte chemoattractant protein (MCP); nor-binaltorphimine (nor-BNI); phosphatidylinositol 3-kinase (PI3-kinase); phospholipase C-γ (PLCγ); regulated on activation, normal T cell expressed and secreted (RANTES); soluble TNF receptor subunit (sTNFR1); stem cell factor (SCF); thrombopoietin (TPO); transactivator of transcription (Tat); tumor necrosis factor-α (TNF-α); vascular endothelial growth factor (VEGF).