Since their discovery as cell-division factors in plant tissue culture about five decades ago, cytokinins have been hypothesized to play a central role in the regulation of cell division and differentiation in plants. To test this hypothesis in planta, we isolated Arabidopsis plants lacking one, two, or three of the genes encoding a subfamily of histidine kinases (CRE1, AHK2, and AHK3) that function as cytokinin receptors. Seeds were obtained for homozygous plants containing mutations in all seven genotypes, namely single, double, and triple mutants, and the responses of germinated seedlings in various cytokinin assays were compared. Both redundant and specific functions for the three different cytokinin receptors were observed. Plants carrying mutations in all three genes did not show cytokinin responses, including inhibition of root elongation, inhibition of root formation, cell proliferation in and greening of calli, and induction of cytokinin primary-response genes. The triple mutants were small and infertile, with a reduction in meristem size and activity, yet they possessed basic organs: roots, stems, and leaves. These results confirm that cytokinins are a pivotal class of plant growth regulators but provide no evidence that cytokinins are required for the processes of gametogenesis and embryogenesis.S ince the discovery of kinetin in 1956 as a degradation product of DNA that promotes cell division in plants (1), a considerable amount of biochemical, physiological, and, most recently, genetic research has focused on elucidating the diverse roles that cytokinins play in plant growth and development. Perturbations of cytokinin levels in plants via over-expression of bacterial cytokinin synthesis genes (2-4), recovery of mutant plants with a higher-than-normal cytokinin content (5), and characterization of loss-of-function mutants of the cytokinin receptor CYTOKININ RESPONSE 1 (CRE1) (6-9) have implicated cytokinins in a wide variety of processes, including cell division, organ formation and regeneration, senescence, apical dominance, vascular development, response to pathogens, and nutrient mobility. These numerous roles for cytokinins, coupled with the failure of mutant screens to yield plants with nondetectable cytokinin levels, led to the longstanding belief that cytokinins are essential for plant growth and development.Plants respond to cytokinin through a multistep phosphorelay system, consisting of sensor histidine kinase (HK) proteins, histidine phosphotransfer (HPt) proteins, and effector response regulator (RR) proteins. Over-expression and loss-of-function analyses of particular HK, HPt, and RR proteins in Arabidopsis (8-13), combined with transient expression assays in protoplasts (14), have led to a model for cytokinin signaling (for a review, see refs. 15 and 16), beginning with perception of cytokinins by HK proteins.The Arabidopsis genome encodes six nonethylene receptor HKs: CRE1͞WOL͞AHK4, AHK2, AHK3, AtHK1, CKI1, and CKI2͞AHK5. Among them, CRE1, Arabidopsis HK2 (AHK2), and Arabidopsis HK3 (A...