In excised pith parenchyma from Nicotiana tabacum L. cv. Wisconsin Havana 38, auxin (naphthalene-1-acetic acid) together with cytokinin (6-benzylaminopurine) induced a greater than 40-fold increase in a p34cdc2-like protein, recoverable in the p13suc1-binding fraction, that had high H1 histone kinase activity, but enzyme induced without cytokinin was inactive. In suspension-cultured N. plumbaginifolia Viv., cytokinin (kinetin) was stringently required only in late G2 phase of the cell division cycle (cdc) and cells lacking kinetin arrested in G2 phase with inactive p34cdc2-like H1 histone kinase. Control of the Cdc2 kinase by inhibitory tyrosine phosphorylation was indicated by high phosphotyrosine in the inactive enzyme of arrested pith and suspension cells. Yeast cdc25 phosphatase, which is specific for removal of phosphate from tyrosine at the active site of p34cdc2 enzyme, was expressed in bacteria and caused extensive in-vitro activation of p13suc1-purified enzyme from pith and suspension cells cultured without cytokinin. Cytokinin stimulated the removal of phosphate, activation of the enzyme and rapid synchronous entry into mitosis. Therefore, plants can control cell division by tyrosine phosphorylation of Cdc2 but differ from somatic animal cells in coupling this mitotic control to hormonal signals.
The aerial architecture of flowering plants is determined to a large extent by shoot growth and shoot branching arising from the initiation and growth of axillary meristems. We have identified an Arabidopsis mutant, supershoot (sps), which is characterized by a massive overproliferation of shoots, such that a single plant can generate 500 or more inflorescences. Analysis of the mutant plants shows that the primary defect is because of an increase in the number of meristems formed in leaf axils, together with release of bud arrest, resulting in reiterative branch formation from rosette and cauline leaves. The SPS gene is shown here to encode a cytochrome P450, and together with a 3-to 9-fold increase in levels of Z-type cytokinins in sps mutant plants, indicate a role for SPS in modulating hormone levels. The expression pattern of SPS, with strong expression at the leaf axils, correlates well with the phenotypic defects. Our results indicate that control of shoot branching in Arabidopsis may be accomplished in part by suppression of axillary meristem initiation and growth through the localized attenuation of cytokinin levels at sites of bud initiation.
Cytokinins (CKs) coming from the roots via the xylem are known to delay leaf senescence, and their decline may be important in the senescence of soybean (Glycine max) plants during pod development (monocarpic senescence). Therefore, using radioimmunoassay of highly purified CKs, we quantified the zeatin (Z), zeatin riboside (ZR), the dihydro derivatives (DZ, DZR), the 0-glucosides, and DZ nucleotide in xylem sap collected from root stocks under pressure at various stages of pod development. Z, ZR, DZ, and DZR dropped sharply during early pod development to levels below those expected to retard senescence. Pod removal at full extension, which delayed leaf senescence, caused an increase in xylem sap CKs (particularly ZR and DZR), while depodding at late podfill, which did not delay senescence, likewise did not increase the CK levels greatly. The levels of the 0-glucosides and the DZ nucleotide were relatively low, and they showed less change with senescence or depodding. The differences in the responses of individual CKs to senescence and depodding suggest differences in their metabolism. Judging from their activity, concentrations and response to depodding, DZR and ZR may be the most important senescence retardants in soybean xylem sap. These data also suggest that the pods can depress CK production by the roots at an early stage and this decrease in CK production is required for monocarpic senescence in soybean.CK2 appears to be the major senescence-retarding hormone in plants, and its role in leaves is particularly important (30). Nonetheless, there is little integrated information on the CK hormone systems regulating senescence or other processes (21). A wide variety of studies have shown that leaf senescence is usually correlated with a decrease in CK activity levels in the leaves and have implicated roots as the major sources of CKs in mature leaves (30). These root-produced CKs are carried through the xylem into the leaves with the transpiration stream.In soybean, the developing pods, specifically the seeds, cause the plant to degenerate (monocarpic senescence) and die (14,15,19,20). Removal of the pods before, but not during, late podfill can prevent the dramatic yellowing and death of the plant (15, 19). How does CK fit into this correlative control picture? Early in reproductive development, the foliar CK-like activity (16) declines. This decrease is due neither to diversion of the flux from the leaves to the pods (22, 23) nor to an increase in the metabolism of CKs (Z and ZR and their metabolites), which is quite rapid anyhow in mature leaves (22,23,27). Thus, a decline in CK production by the roots could account for the decrease in foliar CK levels. In order to test further the connection between CKs and leaf senescence and to fill in a gap in our understanding of the role of CK in the control of senescence, this study examines the xylem sap levels of CK as a relative index of CK flux in plants allowed to develop fruit and senesce normally as well as in depodded plants. MATERIALS AND METHODS Pl...
We measured the level of xylem-derived cytokinins (CKs) entering a cotton leaf, and the CK levels in the same leaf, thus enabling xylem sap and foliar CKs to be compared concurrently. Although zeatin was the dominant CK in xylem sap, zeatin, dihydrozeatin, and N 6 -(2-isopentenyl) adenine were present in approximately equimolar levels in leaves. Elevated [CO 2 ] (EC) has an effect on the levels of cytokinins in sap and leaf tissues. This effect was modulated by the two levels of root nitrogen nutrition (2 and 12 mm nitrate). Growth enhancement (70%) in EC over plants in ambient [CO 2 ] (AC) was observed for both nitrogen nutrition treatments. Low-nitrogen leaves growing in EC exhibited photosynthetic acclimation, whereas there was no sign of photosynthetic acclimation in high-nitrogen grown leaves. Under these prevailing conditions, xylem sap and leaf tissues were obtained for CK analysis. Higher nitrogen nutrition increased the delivery per unit leaf area of CKs to the leaf at AC. EC caused a greater increase in CK delivery to the leaf at low nitrogen conditions (106%) than at high nitrogen conditions (17%). EC induced a significant increase in CK content in low-nitrogen leaves, whereas CK content in leaf tissues was similar for high-nitrogen leaves growing in AC and EC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.