Among the asexual reproductive modes, androgenesis is probably one of the most astonishing and least studied mechanisms. In this 'paternal monopolization', the maternal nuclear genome fails to participate in zygote development and offspring are paternal nuclear clones. Obligate androgenesis is known in only a few organisms, including multiple species of clam in the genus Corbicula. Corbicula is a good system to review the evolutionary consequences of this 'all-male asexuality' because the cytological mechanisms of androgenetic reproduction have been described. In Corbicula, sperm are unreduced and, after fertilization, the maternal nuclear chromosomes are extruded as two polar bodies. Hermaphroditic lineages of Corbicula have a worldwide distribution and seem to reproduce through androgenesis, whereas their sexual relatives have restricted ranges. The invasive success of these androgenetic Corbicula lineages may be linked to their asexual mode of reproduction. We review the phenomenon of androgenesis, focusing on evolutionary perspectives, using the genus Corbicula as an exemplar system.