Cytological observations and DNA microfluorometry of the hermaphrodite freshwater triploid clam Corbicula leana revealed unusual androgenetic development as follows: (1) the maternal genome of zygotes was extruded as two polar bodies just after karyokinesis of the first meiosis, (2) only chromosomes derived from one male pronucleus constituted the metaphase of the first cleavage of zygotes, (3) DNA content of 7-day-old veliger larvae was identical to the somatic cells of the parent. This spontaneous androgenetic process in C. leana zygotes is the first case in the phylum Mollusca and may be related to the specialized mode of reproduction; i.e. hermaphroditism and self-fertilization.
In Mytilus mussels, paternal mitochondrial DNA (M type) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, it has been reported that female mussels generally have only maternal mtDNA (F type). In this study, we examined the mode of mtDNA transmission in Mytilus galloprovincialis using M and F type-specific primer sets. The ratio of M and F types were measured in each sample by SNaPshot. The M type was detected in the adductor muscle and female gonad of all females. In unfertilized eggs spawned by 84.6% of females (22/26), M type was also detected. The F type was more abundant than the M type in all females. Although the ratio of M type in females was very low, all females contained the M type. From these results, we propose a new possibility about DUI inheritance. The presence of M type in unfertilized eggs indicates that the M type of eggs may also contribute to M type inheritance.
In Mytilidae, mitochondrial DNA (mtDNA) in the offspring is inherited from male and female parents. Sperm mitochondria are only incorporated into the testes. This phenomenon is called doubly uniparental inheritance (DUI). Sperm mitochondria should locate in the primordial germ cell during development to maintain DUI. However, the mechanism of sperm mitochondria localization is still unknown. To reveal the mechanism, we followed the location of sperm mitochondria in Mytilus galloprovincialis zygotes fertilized with sperm stained by MitoTracker. Just after fertilization, sperm mitochondria, which were found to enter eggs from various sites, remained at sperm entry point. Five sperm mitochondria located at the male pronucleus. After pronuclear expansion, sperm mitochondria migrated to the center of the egg together with the male pronucleus. At anaphase of cleavage-I, the distribution pattern of sperm mitochondria was divided into two patterns. In pattern A, sperm mitochondria located in the equatorial region of the eggs. In pattern B, sperm mitochondria migrated and divided into two groups with chromosomes. From observations of colchicine-treated eggs, we suggest that sperm mitochondria migration from fertilization to anaphase of cleavage-I depends on the microtubules. The difference between pattern A and pattern B may be caused by whether sperm mitochondria migrated or not by the microtubules at cleavage-I.
Hermaphroditic freshwater clams in the genus Corbicula produce non-reductional spermatozoa. The DNA content of spermatozoa was almost identical with that of somatic cells in C. leana from Mie Prefecture, Japan. Hermaphroditic C. aff. fluminea from Saga Prefecture and C. fluminea from Taiwan also produce non-reductional spermatozoa. On the other hand, spermatozoa of the dioecious C. sandai had half the DNA found in somatic cells. Analysis of chromosome numbers suggests that C. leana (3n = 54 in somatic cells and 18 in meiotic cells) from Mie Prefecture and C. aff. fluminea (2n = 36 in gills and 18 bivalents in meiotic cells) from Saga Prefecture are triploids and diploids, respectively. C. leana, C. aff. fluminea, and C. fluminea may lack either first or second meiosis, resulting in non-reductional spermatozoa. We assume that gynogenetic reproduction occurs in both species; maternal chromosomes are also nonreductional, and spermatozoa activate development of the eggs, but do not contribute to the offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.