Hyaluronan (HA) associates with proteins and proteoglycans to form the extracellular HA-rich matrices that significantly affect cellular behaviors. So far, only the heavy chains of the plasma inter-␣-trypsin inhibitor (ITI) family, designated as SHAPs (serum-derived hyaluronan-associated proteins), have been shown to bind covalently to HA. The physiological significance of such a unique covalent complex has been unknown but is of great interest, because HA and the ITI family are abundant in tissues and in plasma, respectively, and the SHAP-HA complex is formed wherever HA meets plasma. We abolished the formation of the SHAP-HA complex in mice by targeting the gene of bikunin, the light chain of the ITI family members, which is essential for their biosynthesis. As a consequence, the cumulus oophorus, an investing structure unique to the oocyte of higher mammals, had a defect in forming the extracellular HA-rich matrix during expansion. The ovulated oocytes were completely devoid of matrix and were unfertilized, leading to severe female infertility. Intraperitoneal administration of ITI, accompanied by the formation of the SHAP-HA complex, fully rescued the defects. We conclude that the SHAP-HA complex is a major component of the HA-rich matrix of the cumulus oophorus and is essential for fertilization in vivo.
To examine whether globotriaosylceramide (Gb3/CD77) is a receptor for verotoxins (VTs) in vivo, sensitivity of Gb3/CD77 synthase null mutant mice to VT-2 and VT-1 was analyzed. Although wild-type mice died after administration of 0.02 g of VT-2 or 1.0 g of VT-1, the mutant mice showed no reaction to doses as much as 100 times that administered to wild types. Expression analysis of Gb3/CD77 in mouse tissues with antibody revealed that low, but definite, levels of Gb3/CD77 were expressed in the microvascular endothelial cells of the brain cortex and pia mater and in renal tubular capillaries. Corresponding to the Gb3/CD77 expression, tissue damage with edema, congestion, and cytopathic changes was observed, indicating that Gb3/CD77 (and its derivatives) exclusively function as a receptor for VTs in vivo. The lethal kinetics were similar regardless of lipopolysaccharide elimination in VT preparation, suggesting that basal Gb3/CD77 levels are sufficient for lethal effects of VTs.
A thrombopoietic factor, termed thrombopoietin (TPO), was highly purified directly from the plasma of sublethally irradiated 1,100 rats by measuring the production of megakaryocytes from a highly enriched population of rat megakaryocyte progenitor cells (CFU-MK). The rat plasma TPO is a glycoprotein and strongly hydrophobic. The total activity and purification yields obtained were about 29% and 1.49 x 10(8), respectively. The amino acid sequences of the two peptide fragments prepared from the purified 19 kDa TPO were analyzed, and used for the cloning of rat and human TPO cDNAs. It was found that the 19 kDa TPO was truncated but comprised at least 163 amino acids. The sequence of human TPO cDNA revealed that the TPO was identical to the c-Mpl ligand. Both rat and human TPOs expressed in COS-1 cells exhibited significant activity toward the CFU-MK in vitro, and were active in stimulating platelet production in mice. These results indicate that a thrombopoietic factor originally found in the irradiated rat plasma is a ligand for the rat c-Mpl.
The complete gene for human thrombopoietin ('I'PO) has been cloned by screening a human genomic library using human TPO cDNA as a probe. This gene is 6.2 kb in length and contains six exons and five introns. It is shown that the human genome contains a single copy of the human TPO gene according to Southern blotting analysis. The transcription initiation site was determined by Sl nuclease mapping. The human TPO gene expressed TFQ activity when transfected into COS-1 cells. The human TPO gene has been mapped to chromosome 3q27 by in situ hybridization using a biotin-labeled probe.
We investigated whether Vasa was a germline-specific marker in the colonial ascidian Botryllus primigenus, and whether it was inducible epigenetically in the adult life span. We cloned a Botryllus Vasa homologue (BpVas). The deduced open reading frame encoded 687 amino acid residues. It was expressed specifically by germline cells such as the loose cell mass, oogonia and juvenile oocytes in the ovary, and the primordial testis (compact cell mass), spermatogonia and juvenile spermatocytes in the testis. The loose cell mass, the most primitive germline cells, showed an ultrastructure of undifferentiated cells known as hemoblasts. The hemoblasts did not contain electron-dense materials or a mitochondrial assembly in the cytoplasm. These organelles appeared later in the oogonia and oocytes. When the loose cell mass and developing germ cells were eliminated by extirpating all zooids and buds from the colonies, BpVas transcripts disappeared completely from the vascularized colonies. After 14 days, when the colonies regenerated by vascular budding, BpVas-positive cells reappeared in some cases, and in 30 day colonies, BpVas-positive germ cells were observed in all the regenerated colonies. These results show that in B. primigenus, germ cells are inducible de novo from the Vasa-negative cells even at postembryonic stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.