Plasmacytoid dendritic cells are present in lymphoid and nonlymphoid tissue and contribute substantially to both innate and adaptive immunity. Recently, we have described several monoclonal antibodies that recognize a plasmacytoid dendritic cell-specific antigen, which we have termed BDCA-2. Molecular cloning of BDCA-2 revealed that BDCA-2 is a novel type II C-type lectin, which shows 50.7% sequence identity at the amino acid level to its putative murine ortholog, the murine dendritic cell–associated C-type lectin 2. Anti–BDCA-2 monoclonal antibodies are rapidly internalized and efficiently presented to T cells, indicating that BDCA-2 could play a role in ligand internalization and presentation. Furthermore, ligation of BDCA-2 potently suppresses induction of interferon α/β production in plasmacytoid dendritic cells, presumably by a mechanism dependent on calcium mobilization and protein-tyrosine phosphorylation by src-family protein-tyrosine kinases. Inasmuch as production of interferon α/β by plasmacytoid dendritic cells is considered to be a major pathophysiological factor in systemic lupus erythematosus, triggering of BDCA-2 should be evaluated as therapeutic strategy for blocking production of interferon α/β in systemic lupus erythematosus patients.
A thrombopoietic factor, termed thrombopoietin (TPO), was highly purified directly from the plasma of sublethally irradiated 1,100 rats by measuring the production of megakaryocytes from a highly enriched population of rat megakaryocyte progenitor cells (CFU-MK). The rat plasma TPO is a glycoprotein and strongly hydrophobic. The total activity and purification yields obtained were about 29% and 1.49 x 10(8), respectively. The amino acid sequences of the two peptide fragments prepared from the purified 19 kDa TPO were analyzed, and used for the cloning of rat and human TPO cDNAs. It was found that the 19 kDa TPO was truncated but comprised at least 163 amino acids. The sequence of human TPO cDNA revealed that the TPO was identical to the c-Mpl ligand. Both rat and human TPOs expressed in COS-1 cells exhibited significant activity toward the CFU-MK in vitro, and were active in stimulating platelet production in mice. These results indicate that a thrombopoietic factor originally found in the irradiated rat plasma is a ligand for the rat c-Mpl.
The complete gene for human thrombopoietin ('I'PO) has been cloned by screening a human genomic library using human TPO cDNA as a probe. This gene is 6.2 kb in length and contains six exons and five introns. It is shown that the human genome contains a single copy of the human TPO gene according to Southern blotting analysis. The transcription initiation site was determined by Sl nuclease mapping. The human TPO gene expressed TFQ activity when transfected into COS-1 cells. The human TPO gene has been mapped to chromosome 3q27 by in situ hybridization using a biotin-labeled probe.
The signals that prompt the axons to send out processes in peripheral nerves after axotomy are not well understood. Here, we report that galectin-1 can play an important role in this initial stage. We developed an in vitro nerve regeneration model that allows us to monitor the initial axon and support cell outgrowth from the proximal nerve stump, which is comparable to the initial stages of nerve repair. We isolated a factor secreted from COS1 cells that enhanced axonal regeneration, and we identified the factor as galectin-1. Recombinant human galectin-1 (rhGAL-1) showed the same activity at low concentrations (50 pg/ml) that are two orders of magnitude lower than those of lectin activity. A similarly low concentration was also effective in in vivo experiments of axonal regeneration with migrating reactive Schwann cells to a grafted silicone tube after transection of adult rat peripheral nerve. Moreover, the application of functional anti-rhGAL-1 antibody strongly inhibited the regeneration in vivo as well as in vitro. The same effect of rhGAL-1 was confirmed in crush/freeze experiments of the adult mouse sciatic nerve. Because galectin-1 is expressed in the regenerating sciatic nerves as well as in both sensory neurons and motor neurons, we suggest that galectin-1 may regulate initial repair after axotomy. This high activity of the factor applied under nonreducing conditions suggests that galectin-1 may work as a cytokine, not as a lectin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.