We introduce the sub-lattice approach, a procedure to generate, from a given integrable lattice, a sub-lattice which inherits its integrability features. We consider, as illustrative example of this approach, the discrete Moutard 4-point equation and its sub-lattice, the self-adjoint 5-point scheme on the star of the square lattice, which are relevant in the theory of the integrable Discrete Geometries and in the theory of discrete holomorphic and harmonic functions (in this last context, the discrete Moutard equation is called discrete Cauchy-Riemann equation). We use the sub-lattice point of view to derive, from the Darboux transformations and superposition formulas of the discrete Moutard equation, the Darboux transformations and superposition formulas of the self-adjoint 5-point scheme. We also construct, from algebro-geometric solutions of the discrete Moutard equation, algebro-geometric solutions of the self-adjoint 5-point scheme. We finally use these solutions to construct explicit examples of discrete holomorphic and harmonic functions, as well as examples of quadrilateral surfaces in R 3 .