2020
DOI: 10.5194/hess-2020-588
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Data assimilation with multiple types of observation boreholes via ensemble Kalman filter embedded within stochastic moment equations

Abstract: Abstract. We employ an approach based on ensemble Kalman filter coupled with stochastic moment equations (MEs-EnKF) of groundwater flow to explore the dependence of conductivity estimates on the type of available information about hydraulic heads in a three-dimensional randomly heterogeneous field where convergent flow driven by a pumping well takes place. To this end, we consider three types of observation devices, corresponding to (i) multi-node monitoring wells equipped with packers (Type A), (ii) partially… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 44 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?