The focus of this work is on an alternative implementation of the iterative ensemble smoother (iES). We show that iteration formulae similar to those used in [3,6] can be derived by adopting a regularized Levenberg-Marquardt (RLM) algorithm [14] to approximately solve a minimum-average-cost (MAC) problem. This not only leads to an alternative theoretical tool in understanding and analyzing the behaviour of the aforementioned iES, but also provides insights and guidelines for further developments of the smoothing algorithms. For illustration, we compare the performance of an implementation of the RLM-MAC algorithm to that of the approximate iES used in [3] in three numerical examples: an initial condition estimation problem in a strongly nonlinear system, a facies estimation problem in a 2D reservoir and the history matching problem in the Brugge field case. In these three specific cases, the RLM-MAC algorithm exhibits comparable or even better performance, especially in the strongly nonlinear system.
Recently a new framework has been proposed to explore the dynamics of pseudoperiodic time series by constructing a complex network [Phys. Rev. Lett. 96, 238701 (2006)]. Essentially, this is a transformation from the time domain to the network domain, which allows for the dynamics of the time series to be studied via the organization of the network. In this paper, we focus on the deterministic chaotic Rössler time series and stochastic noisy periodic data that yield substantially different structures of the networks. In particular, we test an extensive range of network topology statistics, which have not be discussed in previous works, but which are capable of providing a comprehensive statistical characterization of the dynamics from different angles. Our goal is to find out how they reflect and quantify different aspects of specific dynamics, and how they can be used to distinguish different dynamical regimes. For example, we find that the joint degree distribution appears to fundamentally characterize the spatial organizations of the cycles in phase space, and this is quantified via assortativity coefficient. We applied the network statistics to the electrocardiograms of a healthy individual and an arrythmia patient. Such time series are typically pseudoperiodic, but are noisy and nonstationary and degrade traditional phase-space based methods. These time series are, however, better differentiated by our network-based statistics.
This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF).In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an ''ensemble of Kalman filters'' operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an ''ensemble'' of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.
The stochastic ensemble Kalman filter (EnKF) updates its ensemble members with observations perturbed with noise sampled from the distribution of the observational errors. This was shown to introduce noise into the system and may become pronounced when the ensemble size is smaller than the rank of the observational error covariance, which is often the case in real oceanic and atmospheric data assimilation applications. This work introduces an efficient serial scheme to mitigate the impact of observations' perturbations sampling in the analysis step of the EnKF, which should provide more accurate ensemble estimates of the analysis error covariance matrices. The new scheme is simple to implement within the serial EnKF algorithm, requiring only the approximation of the EnKF sample forecast error covariance matrix by a matrix with one rank less. The new EnKF scheme is implemented and tested with the Lorenz-96 model. Results from numerical experiments are conducted to compare its performance with the EnKF and two standard deterministic EnKFs. This study shows that the new scheme enhances the behavior of the EnKF and may lead to better performance than the deterministic EnKFs even when implemented with relatively small ensembles.
A modification scheme to the ensemble Kalman filter (EnKF) is introduced based on the concept of the unscented transform (Julier et al., 2000; Julier and Uhlmann, 2004), which therefore will be called the ensemble unscented Kalman filter (EnUKF) in this work. When the error distribution of the analysis is symmetric (not necessarily Gaussian), it can be shown that, compared to the ordinary EnKF, the EnUKF has more accurate estimations of the ensemble mean and covariance of the background by examining the multidimensional Taylor series expansion term by term. This implies that, the EnUKF may have better performance in state estimation than the ordinary EnKF in the sense that the deviations from the true states are smaller. For verification, some numerical experiments are conducted on a 40-dimensional system due to Lorenz and Emanuel (Lorenz and Emanuel, 1998). Simulation results support our argument
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.