2021
DOI: 10.5715/jnlp.28.183
|View full text |Cite
|
Sign up to set email alerts
|

Data Augmentation by Rubrics for Short Answer Grading

Abstract: Short Answer Grading (SAG) is the task of scoring students' answers for applications such as examinations or e-learning. Most of the existing SAG systems predict scores based only on the answers, and critical evaluation criteria such as rubrics are ignored, which plays a crucial role in evaluating answers in real-world situations. In this paper, we propose a semi-supervised method to train a neural SAG model. We extract keyphrases that are highly related to answers scores from rubrics. Weights to words of answ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 19 publications
0
0
0
Order By: Relevance