2020
DOI: 10.33414/ajea.5.748.2020
|View full text |Cite
|
Sign up to set email alerts
|

Data Augmentation para la Clasificación Automática de la Calidad Vocal

Abstract: Se presenta el estado del plan de tesis “Valoración de la calidad vocal a través de deep scattering spectrum y aprendizaje automático” y se plantean tres transformaciones para incrementar la cantidad de datos de entrenamiento y reducir el sobreajuste. Estas transformaciones realizan un desplazamiento en frecuencia de los datos (audios), una segmentación por tiempo y la inversión del orden temporal (flipping). Como resultado, se obtiene un juego de datos 18 veces mayor al original. Se ejecuta un experimento que… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 8 publications
0
0
0
Order By: Relevance