The 8th International Electronic Conference on Sensors and Applications 2021
DOI: 10.3390/ecsa-8-11335
|View full text |Cite
|
Sign up to set email alerts
|

Data-Centric Performance Improvement Strategies for Few-Shot Classification of Chemical Sensor Data

Abstract: Metal oxide (MOX) sensors offer a low-cost solution to detect volatile organic compound (VOC) mixtures. However, their operation involves time-consuming heating cycles, leading to a slower data collection and data classification process. This work introduces a few-shot learning approach that promotes rapid classification. In this approach, a model trained on several base classes is fine-tuned to recognize a novel class using a small number (n = 5, 25, 50 and 75) of randomly selected novel class measurements/sh… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?