To investigate the effects of subject motion and gantry rotation speed on computed tomography (CT) image quality over a range of image acquisition speeds for fan-beam (FB) and cone-beam (CB) CT scanners, and quantify the geometric and dosimetric errors introduced by FB and CB sampling in the context of adaptive radiotherapy. Methods: Images of motion phantoms were acquired using four CT scanners with gantry rotation speeds of 0.5 s/rotation (denoted FB-0.5), 1.9 s/rotation (FB-1.9), 16.6 s/rotation (CB-16.6), and 60.0 s/rotation (CB-60.0). A phantom presenting various tissue densities undergoing motion with 4-s period and ranging in amplitude from ±0.5 to ±10.0 mm was used to characterize motion artifacts (streaks), motion blur (edge-spread function, ESF), and geometric inaccuracy (excursion of insert centroids and distortion of known shape). An anthropomorphic abdomen phantom undergoing ±2.5-mm motion with 4-s period was used to simulate an adaptive radiotherapy workflow, and relative geometric and dosimetric errors were compared between scanners. Results: At ±2.5-mm motion, phantom measurements demonstrated mean ± SD ESF widths of 0.6 ± 0.0, 1.3 ± 0.4, 2.0 ± 1.1, and 2.9 ± 2.0 mm and geometric inaccuracy (excursion) of 2.7 ± 0.4, 4.1 ± 1.2, 2.6 ± 0.7, and 2.0 ± 0.5 mm for the FB-0.5, FB-1.9, CB-16.6, and CB-60.0 scanners, respectively. The results demonstrated nonmonotonic trends with scanner speed for FB and CB geometries. Geometric and dosimetric errors in adaptive radiotherapy plans were largest for the slowest (CB-60.0) scanner and similar for the three faster systems (CB-16.6, FB-1.9, and FB-0.5). Conclusions: Clinically standard CB-60.0 demonstrates strong image quality degradation in the presence of subject motion, which is mitigated through faster CBCT or FBCT. Although motion blur is minimized for FB-0.5 and FB-1.9, such systems suffer from increased geometric distortion compared to CB-16.6. Each system reflects tradeoffs in image artifacts and geometric inaccuracies that affect treatment delivery/dosimetric error and should be considered in the design of next-generation CT-guided radiotherapy systems.