2020
DOI: 10.13053/cys-24-3-3478
|View full text |Cite
|
Sign up to set email alerts
|

Data Driven and Psycholinguistics Motivated Approaches to Hate Speech Detection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(3 citation statements)
references
References 4 publications
0
1
0
Order By: Relevance
“…Regarding the text portion of the model, the current task may benefit from multiple, well-known NLP methods and applications. Among these, we may consider the use of hate speech detection methods (Basile et al, 2019;Mishra et al, 2019;da Silva et al, 2020), authorship attribution (Custódio and Paraboni, 2021; Barlas and Stamatatos, 2021), or author profiling (López-Santillán et al, 2020;Rangel et al, 2020). The latter, comprising the computational task of determining individuals' demographics from text, may help determine their stance towards a particular topic by taking into account, for instance, information regarding their political orientation (Flores et al, 2022), personality traits (Verhoeven et al, 2016;dos Santos et al, 2019), moral values (dos Santos andPavan et al, 2023), and others.…”
Section: Final Remarksmentioning
confidence: 99%
“…Regarding the text portion of the model, the current task may benefit from multiple, well-known NLP methods and applications. Among these, we may consider the use of hate speech detection methods (Basile et al, 2019;Mishra et al, 2019;da Silva et al, 2020), authorship attribution (Custódio and Paraboni, 2021; Barlas and Stamatatos, 2021), or author profiling (López-Santillán et al, 2020;Rangel et al, 2020). The latter, comprising the computational task of determining individuals' demographics from text, may help determine their stance towards a particular topic by taking into account, for instance, information regarding their political orientation (Flores et al, 2022), personality traits (Verhoeven et al, 2016;dos Santos et al, 2019), moral values (dos Santos andPavan et al, 2023), and others.…”
Section: Final Remarksmentioning
confidence: 99%
“…A detecc ¸ão transtorno depressivo com base em dados textuais (e.g., provenientes de redes sociais ou outras fontes) é tipicamente modelada na forma de um problema de aprendizado de máquina supervisionado, ou seja, fazendo uso de córpus de textos rotuladas com informac ¸ões relativas ao estado de saúde mental de seus autores (e.g., usuários de redes sociais) para treino e teste de classificadores. Sob esta perspectiva, a tarefa pode ser vista como uma instância do problema de caracterizac ¸ão autoral [dos Santos et al 2020b, Flores et al 2022] combinado à detecc ¸ão de linguagem afetiva [da Silva et al 2020]. Um levantamento de estudos recentes deste tipo é apresentado na Tabela 1, com indicac ¸ão do gênero de texto considerado (Reddit, Twitter), a forma de representac ¸ão dos dados textuais (b=bag of words, BERT [Devlin et al 2019], d=características de domínio, e=embeddings, h=horário da publicac ¸ão, i=imagens, l=atributos LIWC [Pennebaker et al 2001], m=metadados, n=informac ¸ões de rede, p=part-of-speech, s=atributos afetivos, t=tópicos, u=informac ¸ões demográficas), e métodos computacionais (e.g., CNN=redes neurais convolucionais, LSTM=long short-term neural networks, LR=regressão logística, RF=Random Forest, etc.…”
Section: Trabalhos Relacionadosunclassified
“…Supervised training based methods rely on large labeled datasets to train models from classical machine learning (Badjatiya et al, 2017), deep learning such as RNNs (Pavlopoulos et al, 2017), CNNs (Zhang et al, 2018) or BERT and GPT-2 transformers (D'sa et al, 2019;Caselli et al, 2020;Silva et al, 2020). Specifically transformers have been fine-tuned for hate-speech detection (Caselli et al, 2020) as well as for detection of targeted offensive language (Rosenthal et al, 2021) and bias .…”
Section: Related Workmentioning
confidence: 99%