This paper focuses on the computer side of human-computer interaction through natural language, which is the domain of natural language generation (NLG) studies. From a given (usually non-linguistic) input, NLG systems will in principle generate the same fixed text as an output and in order to attain more natural or human-like interaction will often resort to a wide range of strategies for stylistic variation. Among these, the use of computational models of human personality has emerged as a popular alternative in the field and will be the focus of the present work as well. More specifically, the present study describes two machine learning experiments to establish possible relations between personality and content selection (as opposed to the more well-documented relation between personality and surface realisation), and it is, to the best of our knowledge, the first of its kind to address this issue at both macro and micro planning levels, which may arguably pave the way for the future development of more robust personality-dependent systems of this kind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.