Analyses of functional interactions between large-scale brain networks have identified two broad systems that operate in apparent competition or antagonism with each other. One system, termed the default mode network (DMN), is thought to support internally oriented processing. The other system acts as a generic external attention system (EAS) and mediates attention to exogenous stimuli. Reports that the DMN and EAS show anticorrelated activity across a range of experimental paradigms suggest that competition between these systems supports adaptive behavior. Here, we used functional MRI to characterize functional interactions between the DMN and different EAS components during performance of a recollection task known to coactivate regions of both networks. Using methods to isolate task-related, context-dependent changes in functional connectivity between these systems, we show that increased cooperation between the DMN and a specific right-lateralized frontoparietal component of the EAS is associated with more rapid memory recollection. We also show that these cooperative dynamics are facilitated by a dynamic reconfiguration of the functional architecture of the DMN into core and transitional modules, with the latter serving to enhance integration with frontoparietal regions. In particular, the right posterior cingulate cortex may act as a critical information-processing hub that provokes these context-dependent reconfigurations from an intrinsic or default state of antagonism. Our findings highlight the dynamic, contextdependent nature of large-scale brain dynamics and shed light on their contribution to individual differences in behavior.complex | graph | modularity | rest | connectome I ncreasing evidence points to a fundamental distinction between two large-scale functional systems in the brain (1-4). One system, comprising regions of lateral prefrontal and parietal cortex, dorsal anterior cingulate, and anterior insula/frontoopercular regions, typically shows increased activation during performance of challenging cognitive tasks and has been implicated in attentional and cognitive control functions (5, 6). It may thus be generally referred to as an external attention system (EAS), but it has also been labeled the task-positive and extrinsic network (3, 4). The other system, often called the default mode network (DMN), is localized primarily to midline posterior and anterior cortical regions, the angular gyri, and medial and lateral temporal cortices (7,8). It often shows decreased activity during tasks requiring attention to external stimuli (9, 10) and increased activity during unconstrained thought, introspection, and self-related processing (7, 11). The apparent antagonism between these two systems is mirrored in their spontaneous dynamics, which are often strongly anticorrelated (2). These competitive interactions are thought to promote adaptive and efficient alternation between DMN-dominated introspective thought and EAS-mediated processing of external stimuli (1-4).Several lines of evidence support thi...