State-of-Health (SOH) is an intuitive reflection to the capacity during the degradation of lithium-ion batteries. Accurate SOH estimation can not only grasp the battery performance but also achieve a better balance between the safety and economic benefits for lithium-ion battery application system. Relaxation effect refers to the capacity regeneration phenomenon of lithium-ion batteries during long rest time. This paper mainly studies the impact of relaxation effect on the degradation law of lithium-ion batteries, and proposes a novel SOH estimation method based on the Wiener process. First, the life cycle of a lithium-ion battery is divided into three parts, i.e., the degradation process that eliminates the relaxation effect, the capacity regeneration process during the rest time, and the degradation process of the regenerated capacity. Next, the degradation model after eliminating the relaxation effect is established based on linear Wiener process, the capacity regenerated model is developed by the normal distribution, and the degradation model of regenerated capacity is established based on a nonlinear Wiener process. Then, for the degradation model based on nonlinear Wiener process, a two-step maximum likelihood estimation (MLE) method for prior parameters is proposed, and the random variables representing the personality features are updated online under the Bayesian framework. For the capacity regenerated model, a parameter estimation method based on MLE is proposed. In addition, a one-step and a multi-step SOH prediction method based on piecewise modeling are developed. Finally, the experiments are carried out based on the degradation data of lithium-ion batteries published by the NASA, and the results show that the method proposed in this paper can effectively improve the accuracy of the SOH estimation.INDEX TERMS Lithium-ion batteries, state of health, relaxation effect, Wiener process, Bayesian framework.