“…Machine learning has found numerous applications in power systems. It has been used for designing demand response programs [88], consumer behavior modeling [89], fault location detection [90,91] and protection [92], cybersecurity [93], electricity price forecasting [94], demand prediction [95], renewable energy generation forecasting [96,97], transient stability assessment [98], voltage control [79,99], bad data detection [100], energy theft detection [101], grid topology identification [102], outage identification [103], microgrid energy management [104], emergency management [105], power flow estimation [106], optimal power flow prediction [107], unit commitment [108], state estimation [109], reliability management [110], event classification [111], power fluctuation identification [112], energy disaggregation [113], and power quality disturbance classification [114]. However, most of the presented works use a centralized learning framework, and, despite these accomplishments, research on distributed learning architectures in power systems remains very limited.…”