Quantifying uncertainty for parameter estimates obtained from matched-field geoacoustic inversions using a Bayesian approach requires estimation of the uncertainties in the data due to ambient noise as well as modeling errors. In this study, the variance parameter of the Gaussian error model, hereafter called error variance, is assumed to describe the data uncertainty. In practice, this parameter is not known a priori, and choosing a particular value is often difficult. Hence, to account for the uncertainty in error variance, several methods are introduced for implementing both the full and empirical Bayesian approaches. A full Bayesian approach that permits uncertainty of the error variance to propagate through the parameter estimation processes is a natural way of incorporating the uncertainty of error variance. Due to the large number of unknown parameters in the full Bayesian uncertainty analysis, an alternative, the empirical Bayesian approach, is developed, in which the posterior distributions of model parameters are conditioned on a point estimate of the error variance. Comparisons between the full and empirical Bayesian inferences of model parameters are presented using both synthetic and experimental data.