Abstract-This paper provides a review of the literature in on-road vision-based vehicle detection, tracking, and behavior understanding. Over the past decade, vision-based surround perception has progressed from its infancy into maturity. We provide a survey of recent works in the literature, placing vision-based vehicle detection in the context of sensor-based on-road surround analysis. We detail advances in vehicle detection, discussing monocular, stereo vision, and active sensor-vision fusion for on-road vehicle detection. We discuss vision-based vehicle tracking in the monocular and stereo-vision domains, analyzing filtering, estimation, and dynamical models. We discuss the nascent branch of intelligent vehicles research concerned with utilizing spatiotemporal measurements, trajectories, and various features to characterize on-road behavior. We provide a discussion on the state of the art, detail common performance metrics and benchmarks, and provide perspective on future research directions in the field.