After more than 20 years of research, ADAS are common in modern vehicles available in the market. Automated Driving systems, still in research phase and limited in their capabilities, are starting early commercial tests in public roads. These systems rely on the information provided by on-board sensors, which allow to describe the state of the vehicle, its environment and other actors. Selection and arrangement of sensors represent a key factor in the design of the system. This survey reviews existing, novel and upcoming sensor technologies, applied to common perception tasks for ADAS and Automated Driving. They are put in context making a historical review of the most relevant demonstrations on Automated Driving, focused on their sensing setup. Finally, the article presents a snapshot of the future challenges for sensing technologies and perception, finishing with an overview of the commercial initiatives and manufacturers alliances that will show the intention of the market in sensors technologies for Automated Vehicles.
Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Garcia, F.; Cerri, P.; Escalera, A.; Armingol, J. M. (2012). Data fusion for overtaking vehicle detection based on radar and optical flow.
A novel sensor fusion methodology is presented, which provides intelligent vehicles with augmented environment information and knowledge, enabled by vision-based system, laser sensor and global positioning system. The presented approach achieves safer roads by data fusion techniques, especially in single-lane carriageways where casualties are higher than in other road classes, and focuses on the interplay between vehicle drivers and intelligent vehicles. The system is based on the reliability of laser scanner for obstacle detection, the use of camera based identification techniques and advanced tracking and data association algorithms i.e. Unscented Kalman Filter and Joint Probabilistic Data Association. The achieved results foster the implementation of the sensor fusion methodology in forthcoming Intelligent Transportation Systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.