After more than 20 years of research, ADAS are common in modern vehicles available in the market. Automated Driving systems, still in research phase and limited in their capabilities, are starting early commercial tests in public roads. These systems rely on the information provided by on-board sensors, which allow to describe the state of the vehicle, its environment and other actors. Selection and arrangement of sensors represent a key factor in the design of the system. This survey reviews existing, novel and upcoming sensor technologies, applied to common perception tasks for ADAS and Automated Driving. They are put in context making a historical review of the most relevant demonstrations on Automated Driving, focused on their sensing setup. Finally, the article presents a snapshot of the future challenges for sensing technologies and perception, finishing with an overview of the commercial initiatives and manufacturers alliances that will show the intention of the market in sensors technologies for Automated Vehicles.
This paper proposes a method that improves autonomous vehicles localization using a modification of probabilistic laser localization like Monte Carlo Localization (MCL) algorithm, enhancing the weights of the particles by adding Kalman filtered Global Navigation Satellite System (GNSS) information. GNSS data are used to improve localization accuracy in places with fewer map features and to prevent the kidnapped robot problems. Besides, laser information improves accuracy in places where the map has more features and GNSS higher covariance, allowing the approach to be used in specifically difficult scenarios for GNSS such as urban canyons. The algorithm is tested using KITTI odometry dataset proving that it improves localization compared with classic GNSS + Inertial Navigation System (INS) fusion and Adaptive Monte Carlo Localization (AMCL), it is also tested in the autonomous vehicle platform of the Intelligent Systems Lab (LSI), of the University Carlos III de of Madrid, providing qualitative results.
Completely unmanned autonomous vehicles have been anticipated for a while. Initially, these are expected to drive only under certain conditions on some roads, and advanced functionality is required to cope with the ever-increasing challenges of safety. To enhance the public's perception of road safety and trust in new vehicular technologies, we investigate in this paper the effect of several interaction paradigms with vulnerable road users by developing and applying algorithms for the automatic analysis of pedestrian body language. We assess behavioral patterns and determine the impact of the coexistence of AVs and other road users on general road safety in a shared space for VRUs and vehicles. Results showed that the implementation of visual communication cues for interacting with VRUs is not necessarily required for a shared space in which informal traffic rules apply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.