2009
DOI: 10.1515/jisys.2009.18.3.193
|View full text |Cite
|
Sign up to set email alerts
|

Data Mining for Evolving Fuzzy Association Rules for Predicting Monsoon Rainfall of India

Abstract: We used a data mining algorithm to evolve fuzzy association rules between the atmospheric indices and the Summer Monsoon Rainfall of All-India and two homogenous regions (Peninsular and West central). El Nino and Southern Oscillation (ENSO) and Equatorial Indian Ocean Oscillation zonal wind index (EQWIN) indices are used as the causative variables. Rules extracted are showing a negative relation with ENSO index and a positive relation with the EQWIN index. A fuzzy rule based prediction technique is also implem… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2012
2012
2024
2024

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 15 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…This helps to represent the semantic content of the sensor data more efficiently than the binary association rule by providing meaningful linguistic labels of sensor data (Chen and Chen 2007). Moreover, using fuzzy membership functions of fuzzy sets overestimation or underestimation of the boundary values of binary association rule can be addressed by allowing partial membership to different fuzzy sets (Dhanya and Kumar 2009).…”
Section: Fuzzy Association Rulementioning
confidence: 99%
“…This helps to represent the semantic content of the sensor data more efficiently than the binary association rule by providing meaningful linguistic labels of sensor data (Chen and Chen 2007). Moreover, using fuzzy membership functions of fuzzy sets overestimation or underestimation of the boundary values of binary association rule can be addressed by allowing partial membership to different fuzzy sets (Dhanya and Kumar 2009).…”
Section: Fuzzy Association Rulementioning
confidence: 99%
“…Kemampuan yang paling penting adalah self-organizing data mining yang dapat dibuktikan melalui enhanced Group Method of Data Handling (e-GMDH) yang sudah diimplementasikan untuk memperkirakan variabel cuaca seperti suhu, jumlah/tinggi curah hujan dalam satu bulan, dan tekanan udara harian [7]. Data mining dengan teknik lain yaitu Fuzzy Association Rule juga telah dipergunakan untuk memperkirakan curah hujan Moonson di kawasan India [8]. Beberapa penelitian memanfaatkan metode-metode yang ada dalam data mining secara bersamaan.…”
unclassified