This paper presents a methodology to downscale monthly precipitation to river basin scale in Indian context for special report of emission scenarios (SRES) using Support Vector Machine (SVM). In the methodology presented, probable predictor variables are extracted from (1) the National Center for Environmental Prediction (NCEP) reanalysis data set for the period 1971-2000 and (2) the simulations from the third generation Canadian general circulation model (CGCM3) for SRES emission scenarios A1B, A2, B1 and COMMIT for the period 1971-2100. These variables include both the thermodynamic and dynamic parameters and those which have a physically meaningful relationship with the precipitation. The NCEP variables which are realistically simulated by CGCM3 are chosen as potential predictors for seasonal stratification. The seasonal stratification involves identification of (1) the past wet and dry seasons through classification of the NCEP data on potential predictors into two clusters by the use of K-means clustering algorithm and (2) the future wet and dry seasons through classification of the CGCM3 data on potential predictors into two clusters by the use of nearest neighbour rule. Subsequently, a separate downscaling model is developed for each season to capture the relationship between the predictor variables and the predictand. For downscaling precipitation, the predictand is chosen as monthly Thiessen weighted precipitation for the river basin, whereas potential predictors are chosen as the NCEP variables which are correlated to the precipitation and are also realistically simulated by CGCM3. Implementation of the methodology presented is demonstrated by application to Malaprabha reservoir catchment in India which is considered to be a climatically sensitive region. The CGCM3 simulations are run through the calibrated and validated SVM downscaling model to obtain future projections of predictand for each of the four emission scenarios considered. The results show that the precipitation is projected to increase in future for almost all the scenarios considered. The projected increase in precipitation is high for A2 scenario, whereas it is least for COMMIT scenario.
ABSTRACT:In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining projections of monthly mean maximum and minimum temperatures (T max and T min ) to river-basin scale. The effectiveness of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 1978-2100. The predictor variables are classified into three groups, namely A, B and C. Large-scale atmospheric variables such as air temperature, zonal and meridional wind velocities at 925 mb which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth's surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3 and to study the predictor-predictand relationships. The impact of trend in predictor variables on downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables, was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance of SVM models for downscaling T max and T min .
There is an established evidence of climatic teleconnection between El Niño–Southern Oscillation (ENSO) and Indian summer monsoon rainfall (ISMR) during June through September. Against the long‐recognized negative correlation between ISMR and ENSO, unusual experiences of some recent years motivate the search for some other causal climatic variable, influencing the rainfall over the Indian subcontinent. Influence of recently identified Equatorial Indian Ocean Oscillation (EQUINOO, atmospheric part of Indian Ocean Dipole mode) is being investigated in this regard. However, the dynamic nature of cause‐effect relationship burdens a robust and consistent prediction. In this study, (1) a Bayesian dynamic linear model (BDLM) is proposed to capture the dynamic relationship between large‐scale circulation indices and monthly variation of ISMR and (2) EQUINOO is used along with ENSO information to establish their concurrent effect on monthly variation of ISMR. This large‐scale circulation information is used in the form of corresponding indices as exogenous input to BDLM, to predict the monthly ISMR. It is shown that the Indian monthly rainfall can be modeled in a better way using these two climatic variables concurrently (correlation coefficient between observed and predicted rainfall is 0.82), especially in those years when negative correlation between ENSO and ISMR is not well reflected (i.e., 1997, 2002, etc.). Apart from the efficacy of capturing the dynamic relationship by BDLM, this study further establishes that monthly variation of ISMR is influenced by the concurrent effects of ENSO and EQUINOO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.