Reliable prediction of flooding conditions is needed for sizing and operating packed extraction columns. Due to the complex interplay of physicochemical properties, operational parameters and the packing-specific properties, it is challenging to develop accurate semi-empirical or rigorous models with a high validity range. State of the art models may therefore fail to predict flooding accurately. To overcome this problem, a data-driven model based on Gaussian processes is developed to predict flooding for packed liquid-liquid and high-pressure extraction columns. The optimized Gaussian process for the liquid-liquid extraction column results in an average absolute relative error (AARE) of 15.23 %, whereas the algorithm for the high-pressure extraction column results in an AARE of 13.68 %. Both algorithms can predict flooding curves for different packing geometries and chemical systems precisely.