Theophylline is known to undergo vapor phase induced hydrate-anhydrate pseudopolymorphic transformations, which can affect its bioavailability. In this work, the kinetics of the pseudopolymorphic transitions of theophylline crystals in different storage conditions is studied using a vibrational spectroscopic technique. While the hydration is a single-step process with a half-life time of ca. 5 h, the dehydration occurs through a two-step mechanism. In addition, the phase stability of hydrate-anhydrate systems in different relative humidity (RH) conditions was probed. The critical RH for anhydrous teophylline was found to be at ca. 79%, while the critical RH for dehydration is ca. 30%. ß