A shooting method has been introduced for determining the numerical solution of the ordinary differential equations which describe the Newtonian magnetohydrodynamic laminar fluid flow due to an unsteady stretching sheet together with the presence of thermal radiation and variable heat flux. The variable viscosity and variable conductivity are taken into consideration. Absence of magnetic field in some studies restricts the development of the energy-efficient heat transfer mechanism as is desired in numerous applications. The present study encompasses parameters such as unsteadiness parameter, porous parameter, viscosity parameter, magnetic number, radiation parameter, and conductivity parameter. It has been consummated that the proposed model is superior to other existing models for the industrial fluid.