Wound healing is the body’s process of injury recovery. Skin healing is divided into four distinct overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Cell-to-cell interactions mediated by both cytokines and chemokines are imperative for the transition between these phases. Patients can face difficulties in the healing process due to the wound being too large, decreased vascularization, infection, or additional burdens of a systemic illness. The field of tissue engineering has been investigating biomaterials as an alternative for skin regeneration. Biomaterials used for wound healing may be natural, synthetic, or a combination of both. Once a specific biomaterial is selected, it acts as a scaffold for skin regeneration. When the scaffold is applied to a wound, it allows for the upregulation of distinct molecular signaling pathways important for skin repair. Although tissue engineering has made great progress, more research is needed in order to support the use of biomaterials for wound healing for clinical translation.