In recent years, citizen science has emerged as a way to collect data for scientific efforts (Follett and Strezov 2015) across disciplines as diverse as evolution (e.g., Evolution MegaLab; Worthington et al. 2012), astronomy (e.g., GalaxyZoo; Fortson et al. 2012), ornithology (e.g., eBird; Sullivan et al. 2014), plant phenology (e.g., Project BudBurst; Wolkovich and Cleland 2011), and water surveillance (e.g., Global Water Watch; Deutsch and Ruiz-Córdova 2015). In addition to the broad objective of providing data for scientific research efforts, citizen science projects often include goals of environmental education, community engagement, and citizen empowerment. A common denominator among citizen science projects, as opposed to traditional scientific monitoring, is the volunteer base committed to collecting data. Choosing citizen science over traditional monitoring may involve tradeoffs between lower costs of citizen science data collection and loss of data accuracy. Although the literature on citizen science data collection methods is rich (e.g., Hochachka et al. 2012), less is known about the reliability or accuracy of hydrologic citizen science data and its application for policy makers.