In current video coding standards, the encoder exploits temporal redundancies within the video sequence by performing blockbased motion compensated prediction. However, the motion estimation is only performed at the encoder, and the motion vectors have to be coded explicitly into the bit stream. Recent research has shown that the compression efficiency can be improved by also estimating the motion at the decoder. This paper gives a detailed description of a decoder-side motion estimation architecture which assumes temporal constant motion and compares the proposed motion compensation algorithm with an alternative interpolation method. The overall rate reduction for this approach is almost 8% compared to H.264/MPEG-4 Part 10 (AVC). Furthermore, an extensive comparison with the assumption of spatial constant motion, as used in decoder-side motion vector derivation, is given. A new combined approach of both algorithms is proposed that leads to 13% bit rate reduction on average.