A growing percentage of the world population now uses image and video coding technologies on a regular basis. These technologies are behind the success and quick deployment of services and products such as digital pictures, digital television, DVDs, and Internet video communications. Today's digital video coding paradigm represented by the ITU-T and MPEG standards mainly relies on a hybrid of blockbased transform and interframe predictive coding approaches. In this coding framework, the encoder architecture has the task to exploit both the temporal and spatial redundancies present in the video sequence, which is a rather complex exercise. As a consequence, all standard video encoders have a much higher computational complexity than the decoder (typically five to ten times more complex), mainly due to the temporal correlation exploitation tools, notably the motion estimation process. This type of architecture is well-suited for applications where the video is encoded once and decoded many times, i.e., one-to-many topologies, such as broadcasting or video-on-demand, where the cost of the decoder is more critical than the cost of the encoder.Distributed source coding (DSC) has emerged as an enabling technology for sensor networks. It refers to the compression of correlated signals captured by
The apparent difficulty in assessing emotions elicited by movies and the undeniable high variability in subjects emotional responses to filmic content have been recently tackled by exploring film connotative properties: the set of shooting and editing conventions that help in transmitting meaning to the audience. Connotation provides an intermediate representation which exploits the objectivity of audiovisual descriptors to predict the subjective emotional reaction of single users. This is done without the need of registering users physiological signals neither by employing other people highly variable emotional rates, but just relying on the inter-subjectivity of connotative concepts and on the knowledge of users reactions to similar stimuli. This work extends previous by extracting audiovisual and film grammar descriptors and, driven by users rates on connotative properties, creates a shared framework where movie scenes are placed, compared and recommended according to connotation. We evaluate the potential of the proposed system by asking users to assess the ability of connotation in suggesting filmic content able to target their affective requests
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.