Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
The apparent difficulty in assessing emotions elicited by movies and the undeniable high variability in subjects emotional responses to filmic content have been recently tackled by exploring film connotative properties: the set of shooting and editing conventions that help in transmitting meaning to the audience. Connotation provides an intermediate representation which exploits the objectivity of audiovisual descriptors to predict the subjective emotional reaction of single users. This is done without the need of registering users physiological signals neither by employing other people highly variable emotional rates, but just relying on the inter-subjectivity of connotative concepts and on the knowledge of users reactions to similar stimuli. This work extends previous by extracting audiovisual and film grammar descriptors and, driven by users rates on connotative properties, creates a shared framework where movie scenes are placed, compared and recommended according to connotation. We evaluate the potential of the proposed system by asking users to assess the ability of connotation in suggesting filmic content able to target their affective requests
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.