Modern hyperspectral imaging systems produce huge datasets potentially conveying a great abundance of information; such a resource, however, poses many challenges in the analysis and interpretation of these data. Deep learning approaches certainly offer a great variety of opportunities for solving classical imaging tasks and also for approaching new stimulating problems in the spatial–spectral domain. This is fundamental in the driving sector of Remote Sensing where hyperspectral technology was born and has mostly developed, but it is perhaps even more true in the multitude of current and evolving application sectors that involve these imaging technologies. The present review develops on two fronts: on the one hand, it is aimed at domain professionals who want to have an updated overview on how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, we want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields other than Remote Sensing are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.
The results collected from different clinical scenarios (urinary infections and throat swab screening) together with accurate error analysis demonstrate the suitability of our system for robust hemolysis detection and classification, which remains feasible even in challenging conditions (low contrast or illumination changes).
We provide a database containing shot scale annotations (i.e., the apparent distance of the camera from the subject of a filmed scene) for more than 792,000 image frames. Frames belong to 124 full movies from the entire filmographies by 6 important directors: Martin Scorsese, Jean-Luc Godard, Béla Tarr, Federico Fellini, Michelangelo Antonioni, and Ingmar Bergman. Each frame, extracted from videos at 1 frame per second, is annotated on the following scale categories: Extreme Close Up (ECU), Close Up (CU), Medium Close Up (MCU), Medium Shot (MS), Medium Long Shot (MLS), Long Shot (LS), Extreme Long Shot (ELS), Foreground Shot (FS), and Insert Shots (IS). Two independent coders annotated all frames from the 124 movies, whilst a third one checked their coding and made decisions in cases of disagreement. The CineScale database enables AI-driven interpretation of shot scale data and opens to a large set of research activities related to the automatic visual analysis of cinematic material, such as the automatic recognition of the director’s style, or the unfolding of the relationship between shot scale and the viewers’ emotional experience. To these purposes, we also provide the model and the code for building a Convolutional Neural Network (CNN) architecture for automated shot scale recognition. All this material is provided through the
project website
, where video frames can also be requested to authors, for research purposes under fair use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.