Dynamic multiaircraft cooperative suppression interference array (MACSIA) optimization problem is a typical dynamic multiobjective optimization problem. In this paper, the sum of the distance between each jamming aircraft and the enemy air defense radar network center and the minimum width of the safety area for route planning are taken as the objective functions. The dynamic changes in the battlefield environment are reduced to two cases. One is that the location of the enemy air defense radar is mobile, but the number remains the same. The other is that the number of the enemy air defense radars is variable, but the original location remains unchanged. Thus, two dynamic multiobjective optimization models of dynamic MACSIA are constructed. The dynamic multiobjective particle swarm optimization algorithm is used to solve the two models, respectively. The optimal dynamic MACSIA schemes which satisfy the limitation of the given suppression interference effect and ensure the safety of the jamming aircraft themselves are obtained by simulation experiments. And then verify the correctness of the constructed dynamic multiobjective optimization model, as well as the feasibility and effectiveness of the dynamic multiobjective particle swarm optimization algorithm in solving dynamic MACSIA problem.