Toxicopathological images acquired during safety assessment elucidate an individual's biological responses to a given compound, and their numerization can yield valuable insights contributing to the assessment of compound properties. Currently, toxicopathological images are mainly encoded as pathological findings, evaluated by pathologists, which introduces challenges when used as input for modeling, specifically in terms of representation capability and comparability. In this study, we assessed the usefulness of latent representations extracted from toxicopathological images using Convolutional Neural Network (CNN) in estimating compound properties in vivo. Special emphasis was placed on examining the impact of learning pathological findings, the depth of frozen layers during learning, and the selection of the layer for latent representation. Our findings demonstrate that a machine learning model fed with the latent representation as input surpassed the performance of a model directly employing pathological findings as input, particularly in the classification of a compound's Mechanism of Action and in predicting late-phase findings from early-phase images in repeated-dose tests. While learning pathological findings did improve accuracy, the magnitude of improvement was relatively modest. Similarly, the effect of freezing layers during learning was also limited. Notably, the selection of the layer for latent representation had a substantial impact on the accurate estimation of compound properties in vivo.