2023
DOI: 10.3389/fpls.2023.1124939
|View full text |Cite
|
Sign up to set email alerts
|

Deep-agriNet: a lightweight attention-based encoder-decoder framework for crop identification using multispectral images

Abstract: The field of computer vision has shown great potential for the identification of crops at large scales based on multispectral images. However, the challenge in designing crop identification networks lies in striking a balance between accuracy and a lightweight framework. Furthermore, there is a lack of accurate recognition methods for non-large-scale crops. In this paper, we propose an improved encoder-decoder framework based on DeepLab v3+ to accurately identify crops with different planting patterns. The net… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2025
2025

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 38 publications
0
0
0
Order By: Relevance