In robotics, the tough problem about the dynamic target capturing consists of tracking the target by the robot manipulator and grasping the target by the robot finger. For the sake of space, this article deals with only the first problem, tracking the dynamic target by the robot manipulator. The traditional approaches of capturing the dynamic target may work well when they are employed in low-dimensional space by reinforcement learning or physical modeling. However, they fail to work well in high-dimensional space. The traditional approaches have four limitations with respect to Cartesian space, configuration space, reinforcement learning, and physical modeling. To overcome these limitations, this article implements improved dynamic A* algorithm in high-dimensional configuration space map to capture the target. First, a space injection model injects the collision detection and target position from the Cartesian space into the configuration space to construct a high-dimensional map. Then, the target capturing method including the improved dynamic A* algorithm is applied on the map to track and capture the target. Finally, the experiment performed in time-varying environment and the dynamic target achieves a reliable result. This article has proposed an approach that makes the robot manipulator motion planning more accurate in high-dimensional dynamic configuration space. This approach enables the multi-joint manipulator to avoid the obstacle while tracking the target in high-dimensional configuration space. It takes the advantages of heuristic algorithms in the process of target capturing method designing. It adds precision and speed to target tracking. The success of the approach may apply to any industrial robot tracking target, surgical operation, and space probes. And, it may lay a solid foundation for dynamics control with a scope for future investigations.