In recent years, graph neural networks have been successfully applied for learning the dynamics of complex and partially observable physical systems. However, their use in the robotics domain is, to date, still limited. In this paper, we introduce Belief Regulated Dual Propagation Networks (BRDPN), a general purpose learnable physics engine, which enables a robot to predict the effects of its actions in scenes containing groups of articulated multi-part objects. Specifically, our framework extends the recently proposed propagation networks (PropNets) and consists of two complementary components, a physics predictor and a belief regulator. While the former predicts the future states of the object(s) manipulated by the robot, the latter constantly corrects the robots knowledge regarding the objects and their relations. Our results showed that after trained in a simulator, the robot could reliably predict the consequences of its actions in object trajectory level and exploit its own interaction experience to correct its belief about the state of the world, enabling better predictions in partially observable environments. Furthermore, the trained model was transferred to the real world and its capabilities were verified in correctly predicting trajectories of pushed interacting objects whose joint relations were initially unknown. We compared our BRDPN against the original PropNets and showed that BRDPN can perform consistently well even if the relations between the objects are not explicitly given but instead predicted from observations.
Conditional Neural Movement Primitives (CNMPs) is a learning from demonstration framework that is designed as a robotic movement learning and generation system built on top of a recent deep neural architecture, namely Conditional Neural Processes (CNPs). Based on CNPs, CNMPs extract the prior knowledge directly from the training data by sampling observations from it, and uses it to predict a conditional distribution over any other target points. CNMPs specifically learns complex temporal multi-modal sensorimotor relations in connection with external parameters and goals; produces movement trajectories in joint or task space; and executes these trajectories through a high-level feedback control loop. Conditioned with an external goal that is encoded in the sensorimotor space of the robot, predicted sensorimotor trajectory that is expected to be observed during the successful execution of the task is generated by the CNMP, and the corresponding motor commands are executed. In order to detect and react to unexpected events during action execution, CNMP is further conditioned with the actual sensor readings in each time-step. Through simulations and real robot experiments, we showed that CNMPs can learn the nonlinear relations between low-dimensional parameter spaces and complex movement trajectories from few demonstrations; and they can also model the associations between high-dimensional sensorimotor spaces and complex motions using large number of demonstrations. The experiments further showed that even the task parameters were not explicitly provided to the system, the robot could learn their influence by associating the learned sensorimotor representations with the movement trajectories. The robot, for example, learned the influence of object weights and shapes through exploiting its sensorimotor space that includes proprioception and force measurements; and be able to change the movement trajectory on the fly when one of these factors were changed through external intervention.
Symbolic planning and reasoning are powerful tools for robots tackling complex tasks. However, the need to manually design the symbols restrict their applicability, especially for robots that are expected to act in open-ended environments. Therefore symbol formation and rule extraction should be considered part of robot learning, which, when done properly, will offer scalability, flexibility, and robustness. Towards this goal, we propose a novel general method that finds action-grounded, discrete object and effect categories and builds probabilistic rules over them for non-trivial action planning. Our robot interacts with objects using an initial action repertoire that is assumed to be acquired earlier and observes the effects it can create in the environment. To form action-grounded object, effect, and relational categories, we employ a binary bottleneck layer in a predictive, deep encoderdecoder network that takes the image of the scene and the action applied as input, and generates the resulting effects in the scene in pixel coordinates. After learning, the binary latent vector represents action-driven object categories based on the interaction experience of the robot. To distill the knowledge represented by the neural network into rules useful for symbolic reasoning, a decision tree is trained to reproduce its decoder function. Probabilistic rules are extracted from the decision paths of the tree and are represented in the Probabilistic Planning Domain Definition Language (PPDDL), allowing off-the-shelf planners to operate on the knowledge extracted from the sensorimotor experience of the robot. The deployment of the proposed approach for a simulated robotic manipulator enabled the discovery of discrete representations of object properties such as ‘rollable’ and ‘insertable’. In turn, the use of these representations as symbols allowed the generation of effective plans for achieving goals, such as building towers of the desired height, demonstrating the effectiveness of the approach for multi-step object manipulation. Finally, we demonstrate that the system is not only restricted to the robotics domain by assessing its applicability to the MNIST 8-puzzle domain in which learned symbols allow for the generation of plans that move the empty tile into any given position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.