2022
DOI: 10.1016/j.knosys.2021.107941
|View full text |Cite
|
Sign up to set email alerts
|

Deep embedded hybrid CNN–LSTM network for lane detection on NVIDIA Jetson Xavier NX

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
15
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 52 publications
(16 citation statements)
references
References 50 publications
0
15
0
1
Order By: Relevance
“…B. Convolutional neural network : Convolutional neural network (CNN) is a kind of deep learning (DL) algorithm and an efficient feature extraction approach that has demonstrated good results in various signal processing and computer vision applications such as automatic speech recognization, image analysis, wind speed forecasting, object detection, and classification 37 . This CNN has the benefit of combining the classification operation and feature extraction in a single unit, allowing CNN to improve the raw datas' feature extraction at the training phase.…”
Section: Proposed Methodsmentioning
confidence: 99%
See 3 more Smart Citations
“…B. Convolutional neural network : Convolutional neural network (CNN) is a kind of deep learning (DL) algorithm and an efficient feature extraction approach that has demonstrated good results in various signal processing and computer vision applications such as automatic speech recognization, image analysis, wind speed forecasting, object detection, and classification 37 . This CNN has the benefit of combining the classification operation and feature extraction in a single unit, allowing CNN to improve the raw datas' feature extraction at the training phase.…”
Section: Proposed Methodsmentioning
confidence: 99%
“…C. Long short term memory (LSTM) network : LSTM network is an improved version of recurrent neural network (RNN); it has the ability to conquer long and short time lags for predicting tasks 37 . The gradient vanishing issue is considered as one of the major complications of RNN in which it makes the network hard to learn long‐term dependencies.…”
Section: Proposed Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Las aplicaciones van desde algoritmos de identificación de plantas como se expone [2], de vegetables [3] y frutas [4], muy incidentes en temas de punta como la agricultura de precisión. Así mismo la amplitud del espectro del uso de Deep learning y específicamente, como se evidencia en los trabajos mencionados, de las redes neuronales convolucionales (CNN) abarca reconocimiento de señales electromiografícas [5], detección de materiales peligrosos [6] e incluso en conducción autónoma, para detección de vehículos [7] y líneas guía [8]. De forma tal que incluso sistemas robóticos emplean CNN como parte de su esquema de visión, para aplicaciones como robots cosechadores [9] o de reordenamiento de objetos en bandas transportadoras a nivel industrial [10].…”
Section: Introductionunclassified