Over the past few decades, interest in theories and algorithms for face recognition has been growing rapidly. Video surveillance, criminal identification, building access control, and unmanned and autonomous vehicles are just a few examples of concrete applications that are gaining attraction among industries. Various techniques are being developed including local, holistic, and hybrid approaches, which provide a face image description using only a few face image features or the whole facial features. The main contribution of this survey is to review some well-known techniques for each approach and to give the taxonomy of their categories. In the paper, a detailed comparison between these techniques is exposed by listing the advantages and the disadvantages of their schemes in terms of robustness, accuracy, complexity, and discrimination. One interesting feature mentioned in the paper is about the database used for face recognition. An overview of the most commonly used databases, including those of supervised and unsupervised learning, is given. Numerical results of the most interesting techniques are given along with the context of experiments and challenges handled by these techniques. Finally, a solid discussion is given in the paper about future directions in terms of techniques to be used for face recognition.
Lane departure warning systems have gained considerable research interest in the past decade for its promising usage in automotive, where lane detection and tracking is applied. However, it is a challenging task to improve the robustness of lane detection due to environmental factors, such as perspective effect, possible low visibility of lanes, and partial occlusions. To deal with these issues, we propose a reliable vision-based real-time lane markings detection and tracking system that can adapt to various environmental conditions. The lane detection is composed of three stages: pre-processing, Adaptive Region of Interest (AROI) setting, and lane marking detection and tracking. In the pre-processing stage, smoothing and edge detection operators are applied on input frames to automatically obtain binary images, then, lane markings segmentation are carried out. After that, An Adaptive Region of Interest is extracted to reduce the computational complexity. In the subsequent detection stages, Kalman filter is employed to track road boundaries detected in the AROI using Progressive Probabilistic Hough Transform (PPHT) in the next frame. Based on road boundaries and the vehicle's position, the proposed algorithm decides if the vehicle has drifted off the lane. For the performance evaluation of lane detection and tracking, real-life datasets for both urban roads and highways in various lighting conditions are used. Applying our method to Catltech dataset, the average correct detection rate is 93.82%. In addition, the proposed method outperforms that of the state-of-the-art methods in processing time (21.54ms/frame). INDEX TERMS Advanced driving assistance systems (ADAS), lane detection and tracking, lane departure warning system (LDWS), progressive probabilistic Hough transform (PPHT), adaptive region of interest (AROI).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.