2020
DOI: 10.48550/arxiv.2011.03794
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Deep Learning Analysis and Age Prediction from Shoeprints

Abstract: Human walking and gaits involve several complex body parts and are influenced by personality, mood, social and cultural traits, and aging. These factors are reflected in shoeprints, which in turn can be used to predict age, a problem not systematically addressed using any computational approach. We collected 100,000 shoeprints of subjects ranging from 7 to 80 years old and used the data to develop a deep learning end-to-end model ShoeNet to analyze age-related patterns and predict age. The model integrates var… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 57 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?