2022
DOI: 10.3390/app121910167
|View full text |Cite
|
Sign up to set email alerts
|

Deep Learning Based Detector YOLOv5 for Identifying Insect Pests

Abstract: Insect pests are a major element influencing agricultural production. According to the Food and Agriculture Organization (FAO), an estimated 20–40% of pest damage occurs each year, which reduces global production and becomes a major challenge to crop production. These insect pests cause sooty mold disease by sucking the sap from the crop’s organs, especially leaves, fruits, stems, and roots. To control these pests, pesticides are frequently used because they are fast-acting and scalable. Due to environmental p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
42
0
4

Year Published

2023
2023
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 93 publications
(46 citation statements)
references
References 43 publications
0
42
0
4
Order By: Relevance
“…Most previous detection systems performed detection by applying a model to the image at multiple locations and scales and assigning a value to the image as material for detection. The You Only Look Once (YOLO) algorithm detects objects in real time [ 38 ]. A repurposed classifier or localizer is used as the detection system.…”
Section: Methodsmentioning
confidence: 99%
“…Most previous detection systems performed detection by applying a model to the image at multiple locations and scales and assigning a value to the image as material for detection. The You Only Look Once (YOLO) algorithm detects objects in real time [ 38 ]. A repurposed classifier or localizer is used as the detection system.…”
Section: Methodsmentioning
confidence: 99%
“…Evaluasi performa dibedakan menjadi 2 jenis yaitu, hasil deteksi dan performa klasifikasi [33]. Matrix evaluasi performa dalam objek deteksi untuk menganalisa akurasi dari arsitektur YOLO menggunakan Intersection over Union (IoU) [34] berguna mendapatkan nilai kesalahan dari kotak prediksi dan kotak kebenaran seperti yang terlihat pada gambar 4 dibawah ini.…”
Section: F Matrix Evaluasi Performaunclassified
“…Matrix evaluasi performa dalam objek deteksi untuk menganalisa akurasi dari arsitektur YOLO menggunakan Intersection over Union (IoU) [34] berguna mendapatkan nilai kesalahan dari kotak prediksi dan kotak kebenaran seperti yang terlihat pada gambar 4 dibawah ini. Selain IoU terdapat juga evaluasi hasil posisi Bounding Box seperti Precision, F1-Score, Recall, mAP@IoU = 0.5 dan, mAP@IoU = 0.5:0.95 [33] terlihat pada persamaan 5 -8. Sedangkan Confusion Matrix merupakan analisis secara general untuk merepresentasikan kinerja dari klasifikasian [33].…”
Section: F Matrix Evaluasi Performaunclassified
See 1 more Smart Citation
“…High‐throughput phenotyping (HTP) tasks have been one of the successful applications of machine learning (ML) and computer vision in the past decade including plant stress phenotyping (Singh et al., 2016; 2021a). Since 2016, deep learning (DL)‐based methods have been successfully deployed in a variety of applications to extract plant traits, such as pod counting (Riera et al., 2021), crop yield (Shook et al., 2021), weed detection (Bah et al., 2018; dos Santos Ferreira et al., 2017; Osorio et al., 2020; Razfar et al., 2022), insect identification (Ahmad et al., 2022; Bereciartua‐Pérez et al., 2022; Li et al., 2021), disease detection (Ghosal et al., 2018; Kulkarni, 2018; Mohanty et al., 2016; Rairdin et al., 2022; Rangarajan et al., 2018), nutrient deficiency detection (Azimi et al., 2021; Bahtiar et al., 2020; Barbedo, 2019; Waheed et al., 2022; Yi et al., 2020), and root nodules (Jubery et al., 2021). Although conventional DL‐based supervised classification and object detection are powerful models, they require large volumes of labeled data (Singh et al., 2018).…”
Section: Introductionmentioning
confidence: 99%