Interstitial lung disease (ILD) is a heterogeneous group of disorders with complex and varied imaging manifestations and prognosis. High-resolution computed tomography (HRCT) is the current standard-of-care imaging tool for ILD assessment. However, visual evaluation of HRCT is limited by interobserver variation and poor sensitivity for subtle changes. Such challenges have led to tremendous recent research interest in objective and reproducible methods to examine ILDs. Computer-aided CT analysis to include texture analysis and machine learning methods have recently been shown to be viable supplements to traditional visual assessment through improved characterization and quantification of ILDs. These quantitative tools have not only been shown to correlate well with pulmonary function tests and patient outcomes but are also useful in disease diagnosis, surveillance and management. In this review, we provide an overview of recent computer-aided tools in diagnosis, prognosis, and longitudinal evaluation of fibrotic ILDs, while outlining some of the pitfalls and challenges that have precluded further advancement of these tools as well as potential solutions and further endeavors.