In this paper, automated detection of interstitial lung disease patterns in high resolution computed tomography images is achieved by developing a faster region-based convolutional network based detector with GoogLeNet as a backbone. GoogLeNet is simplified by removing few inception models and used as the backbone of the detector network. The proposed framework is developed to detect several interstitial lung disease patterns without doing lung field segmentation. The proposed method is able to detect the five most prevalent interstitial lung disease patterns: fibrosis, emphysema, consolidation, micronodules and ground-glass opacity, as well as normal. Five-fold cross-validation has been used to avoid bias and reduce over-fitting. The proposed framework performance is measured in terms of F-score on the publicly available MedGIFT database. It outperforms state-of-the-art techniques. The detection is performed at slice level and could be used for screening and differential diagnosis of interstitial lung disease patterns using high resolution computed tomography images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.