We consider the problem of dynamic spectrum access for network utility maximization in multichannel wireless networks. The shared bandwidth is divided into K orthogonal channels. In the beginning of each time slot, each user selects a channel and transmits a packet with a certain transmission probability. After each time slot, each user that has transmitted a packet receives a local observation indicating whether its packet was successfully delivered or not (i.e., ACK signal). The objective is a multi-user strategy for accessing the spectrum that maximizes a certain network utility in a distributed manner without online coordination or message exchanges between users.Obtaining an optimal solution for the spectrum access problem is computationally expensive in general due to the large state space and partial observability of the states. To tackle this problem, we develop a novel distributed dynamic spectrum access algorithm based on deep multi-user reinforcement leaning. Specifically, at each time slot, each user maps its current state to spectrum access actions based on a trained deep-Q network used to maximize the objective function. Game theoretic analysis of the system dynamics is developed for establishing design principles for the implementation of the algorithm. Experimental results demonstrate strong performance of the algorithm.Index Terms-Wireless networks, dynamic spectrum access, medium access control (MAC) protocols, multi-agent learning, deep reinforcement learning.Oshri Naparstek is with the Rafael Advanced