The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space.In this paper we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-theart in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.
Energy disaggregation (a.k.a nonintrusive load monitoring, NILM), a single-channel blind source separation problem, aims to decompose the mains which records the whole house electricity consumption into appliance-wise readings. This problem is difficult because it is inherently unidentifiable. Recent approaches have shown that the identifiability problem could be reduced by introducing domain knowledge into the model. Deep neural networks have been shown to be a promising approach for these problems, but sliding windows are necessary to handle the long sequences which arise in signal processing problems, which raises issues about how to combine predictions from different sliding windows. In this paper, we propose sequence-to-point learning, where the input is a window of the mains and the output is a single point of the target appliance. We use convolutional neural networks to train the model. Interestingly, we systematically show that the convolutional neural networks can inherently learn the signatures of the target appliances, which are automatically added into the model to reduce the identifiability problem. We applied the proposed neural network approaches to real-world household energy data, and show that the methods achieve state-of-the-art performance, improving two standard error measures by 84% and 92%.
Forecasting with high accuracy the volume of data traffic that mobile users will consume is becoming increasingly important for precision traffic engineering, demand-aware network resource allocation, as well as public transportation. Measurements collection in dense urban deployments is however complex and expensive, and the post-processing required to make predictions is highly non-trivial, given the intricate spatio-temporal variability of mobile traffic due to user mobility. To overcome these challenges, in this paper we harness the exceptional feature extraction abilities of deep learning and propose a Spatio-Temporal neural Network (STN) architecture purposely designed for precise network-wide mobile traffic forecasting. We present a mechanism that fine tunes the STN and enables its operation with only limited ground truth observations. We then introduce a Double STN technique (D-STN), which uniquely combines the STN predictions with historical statistics, thereby making faithful long-term mobile traffic projections. Experiments we conduct with real-world mobile traffic data sets, collected over 60 days in both urban and rural areas, demonstrate that the proposed (D-)STN schemes perform up to 10-hour long predictions with remarkable accuracy, irrespective of the time of day when they are triggered. Specifically, our solutions achieve up to 61% smaller prediction errors as compared to widely used forecasting approaches, while operating with up to 600 times shorter measurement intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.