2017
DOI: 10.1364/optica.4.001437
|View full text |Cite
|
Sign up to set email alerts
|

Deep learning microscopy

Abstract: We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better res… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

4
330
0
3

Year Published

2018
2018
2023
2023

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 564 publications
(337 citation statements)
references
References 24 publications
4
330
0
3
Order By: Relevance
“…ML has been applied with great success in various fields of microscopy, such as brightfield (Rivenson et al, 2017), holographic (Rivenson & Ozcan, 2018), and fluorescence (Wang et al, 2019). It has proven to be particularly useful for tasks like image reconstruction and transformation.…”
Section: A Range Of Successful Applicationsmentioning
confidence: 99%
“…ML has been applied with great success in various fields of microscopy, such as brightfield (Rivenson et al, 2017), holographic (Rivenson & Ozcan, 2018), and fluorescence (Wang et al, 2019). It has proven to be particularly useful for tasks like image reconstruction and transformation.…”
Section: A Range Of Successful Applicationsmentioning
confidence: 99%
“…However, the methods of statistical learning, in particular CNNs, provide a promising technique with regard to automated image analysis. 2016; Petrich et al, 2017;Rivenson et al, 2017;Furat et al, 2019). 6.…”
Section: Cnn-empowered Crossover Detectionmentioning
confidence: 99%
“…Due to its fully convolutional nature, the input and output sizes of the network are arbitrary. 2016; Petrich et al, 2017;Rivenson et al, 2017;Furat et al, 2019). Integrating these techniques into the analysis process of fibril images is a promising approach that could drastically reduce the efforts needed to process these images using completely interactive approaches alone.…”
Section: Cnn-empowered Crossover Detectionmentioning
confidence: 99%
“…Микроскоп / трихоскоп, трёхмерно-реконструирующий и автоматически идентифицирующий в своём программном обес-печении структуры волос, должен быть настоль-ко сложен, чтобы иметь возможность проводить соответствующие типы анализа, вплоть до мик-роколориметрии и псевдоспектрального анализа (в биохимических целях) волос, и настолько прост, чтобы не отпугивать потенциального по- [12] и томографии [13] на чипе с автоматической идентификацией объектов по данным высокоразрешающей мик-роскопии, получаемых на этих установках [14]. Конструкция этих устройств настолько проста, что их использование и даже изготовление мо-жет быть осуществлено человеком без физиче-ского или инженерного образования.…”
Section: Morphologia • 2018 • том 12 • №unclassified