Training data plays an essential role in modern applications of machine learning. However, gathering labeled training data is time‐consuming. Therefore, labeling is often outsourced to less experienced users, or completely automated. This can introduce errors, which compromise valuable training data, and lead to suboptimal training results. We thus propose a novel approach that uses the power of pretrained classifiers to visually guide users to noisy labels, and let them interactively check error candidates, to iteratively improve the training data set. To systematically investigate training data, we propose a categorization of labeling errors into three different types, based on an analysis of potential pitfalls in label acquisition processes. For each of these types, we present approaches to detect, reason about, and resolve error candidates, as we propose measures and visual guidance techniques to support machine learning users. Our approach has been used to spot errors in well‐known machine learning benchmark data sets, and we tested its usability during a user evaluation. While initially developed for images, the techniques presented in this paper are independent of the classification algorithm, and can also be extended to many other types of training data.
Detecting crossovers in cryo-electron microscopy images of protein fibrils is an important step towards determining the morphological composition of a sample. Currently, the crossover locations are picked by hand, which introduces errors and is a time-consuming procedure. With the rise of deep learning in computer vision tasks, the automation of such problems has become more and more applicable. However, because of insufficient quality of raw data and missing labels, neural networks alone cannot be applied successfully to target the given problem. Thus, we propose an approach combining conventional computer vision techniques and deep learning to automatically detect fibril crossovers in two-dimensional cryo-electron microscopy image data and apply it to murine amyloid protein A fibrils, where we first use direct image processing methods to simplify the image data such that a convolutional neural network can be applied to the remaining segmentation problem.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.